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An analysis is conducted on the coupling between thermosolutal convection due to the Soret effect and
a solid-liquid interface. This phase boundary forms when a thin layer of a dilute binary mixture is par-
tially solidified from above. A nonlinear evolution equation for the amplitude of the concentration per-
turbation has been derived [L. Hadji, Phys. Rev. E 47, 1078 (1993)]. The derivation takes into account
the coupled effects of steady convection in the Soret regime and the deformations in the solid-liquid in-
terface. In this paper, the solution of the equation is reexamined using a fully implicit finite difference
scheme combined with Newton linearization with coupling. We have obtained results which were previ-
ously unobtainable when a fully explicit scheme was used. It is found that, for a range of values of the
various parameters, the solid-liquid interface exhibits a cellular morphology consisting of thin fingers

that extend deep into the liquid.

PACS number(s): 47.27.Te, 68.45.—v, 64.70.Dv, 81.10.Fq

I. INTRODUCTION

For the purpose of analyzing the coupling between
nonlinear convection due to the Soret effect and
solidification, Hadji [1] considers the freezing from above
of a thin layer of a dilute binary mixture that is confined
between two horizontal, rigid, perfectly heat conducting
and impermeable plates. The temperature difference be-
tween the plates is selected so as to allow for the partial
solidification of the mixture. The stationary solid-liquid
interface, across which coexist a solid and a liquid phase,
is assumed to be planar in the absence of fluid flow, and
deformable by the action of convection currents. It is
also assumed that the thermal diffusion coefficient in the
liquid phase resulting from the Soret effect is independent
of concentration so that the equations describing the
preconvective state are all linear in the vertical coordi-
nate. Furthermore, changes in the concentration that are
associated with the solute rejection or incorporation at
the interface, as well as changes in the thermophysical
properties of the fluid upon freezing, are neglected.
These assumptions were necessary for the nonlinear
analysis of the coupling between Soret-driven convection
and interface deformations to be tractable.

The governing system of equations consists of the con-
servation equations for mass, momentum, heat, and
solute in the Boussinesq approximation. Only heat con-
duction is considered in the solid phase. These equations
are nondimensionalized using the depth of the liquid lay-
er in the motionless state for the length scale and the
thermal diffusion time for the time scale. The concentra-
tion is scaled by the Soret-induced concentration gradient
existing between the planar interface and the lower plate.
In the limit of infinite Prandtl number and large positive
separation ratio S, the convective state can be described
by the following evolution equation [1,2]:
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where f(x,t) represents the leading order concentration
and where the coefficients a and b are complicated func-
tions of the independent physical parameters of the prob-
lem, namely the solid layer thickness A, the Lewis num-
ber 7, and the dimensionless liquidus slope 5,
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As noted in Hadji [1], the evolution equation, Eq. (1), is
mathematically well posed only for the range of parame-
ters A, S, and 7, which satisfy y > 0. We have also adopt-
ed the scaling = —€?¢’, where ¢’ is an order-one quanti-
ty, for the nondimensional liquidus slope in order to cou-
ple the leading orders of interface deformations and con-
vective perturbations. When the mixture is in convective
motion, the interface is located at z =1 +62172, where
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II. ANALYSIS OF THE EVOLUTION EQUATION

A linear stability analysis of Eq. (1) reveals that the
trivial solution is stable for 8> 1, but loses stability to a
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cellular state with wave number equal to 1 when the
scaled Biot number is less than 1. For the purpose of
analyzing the bifurcation that occurs at 8=1, we consid-
er an asymptotic study around the zero solution in the vi-
cinity of the bifurcation point f=1. Following a stan-
dard approach, we substitute the following expansions in

Eq. (1):
B=1-yB—v'Bt ",
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a ¥ as
where the perturbation parameter satisfies 0 <y <<1.

The resulting sequence of problems is solved at each
order. The leading order problem yields

f1(x,s)=p(s)cos(x) , (3a)

and at the next order in ¥ the removal of secular terms
yields B, =0 and

fa(x,8)=p*a(2r—59)/2+b +a(30—71)]
+(p2/18)[59b —(2r—59)a] . (3b)

Finally, to the cubic approximation in ¥ we obtain the
sought Landau equation for the evolution of the ampli-
tude p (s),

?fs’—=Bﬂv +1p3, (4a)
where the Landau constant / depends in a complicated
fashion on the parameters of the problem, and is given by

I=—[a(a7)*+7(52a*—50ab)—2546b%—7831ab

—5285a%+271/36 . (4b)

A negative / corresponds to supercritical stability with
equilibration, while a positive constant implies a finite
amplitude instability. One notes from Eq. (4b) that [ is
negative for b =0 and a =0, and positive for large
enough values of b or a. We also note, from Eq. (2a), that
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FIG. 1. Plot of the region of subcriticality (above the curve)
as determined from Eq. (4b) for S =0.035, =10"° (@), and
r=1073(0O).

BRIEF REPORTS 50

the nonvanishing of the coefficients b and a is due to the
nonvanishing of the parameter £ and to the asymmetry in
the boundary conditions due to the solid layer formation
[see Eq. (2.11b) in Ref. [1]]. Consequently, the emer-
gence of the subcritical instability is caused by the cou-
pling between temperature, concentration, and interfacial
deformations at the solid-liquid interface. Figure 1 de-
picts the boundaries in the parameter space of the prob-
lem, separating supercritical and subcritical bifurcations
from the planar state. These boundaries depend on four
physical parameters: the separation ratio S, the Lewis
number 7, the solid thickness A, and the scaled liquidus
slope {. We have fixed two pairs of values for S and =
satisfying the well-posedeness condition Eq. (2b). The
first pair is S =0.035 and 7= 1073, and the second pair is
S =0.035 and 7=10">. The transition boundaries are
then obtained by solving for { as a function of A for the
roots of the function / =0. The numerical task of deter-
mining the roots is accomplished by using the bisection
method.

III. NUMERICAL RESULTS

We consider the numerical solution of Eq. (1) in a
periodic box of length 87. We have adopted a finite
difference scheme that is fully implicit. We have used
forward Euler differencing for the time derivative term,
and a second-order central difference representation for
the spatial derivatives that are evaluated at time step
(n +1). The nonlinear terms are linearized by making
use of Newton linearization with coupling [3]. This
method yields a truncation error O(At,Ax?)
+0(At?) /0 (Ax); consequently, mesh size must be
chosen such that (Az?)/(Ax) remains small for both sta-
bility and consistency of the scheme. This method allows
the solution of Eq. (1) for parameter values that were
inaccessible when a fully explicit scheme was used. The
latter method requires the time step, as determined from
a linear stability analysis, to be highly constrained; even
for small time step, numerical instabilities developed for
large values of {.

We have investigated numerically the evolution of the
initial condition 0.1cos(x) for a range of parameter
values associated with the subcritical region that was
determined theoretically (see Fig. 1). We fixed the values
for S, 7, and 4 to be 0.035, 0.001, and 0.1, respectively,
and then we investigated the evolution of the initial
profile 0.1cos(x) for several values of 8> 1. Figure 2
shows a run with B=1.4 and two values of {. We note
that for {=0 the initial condition evolves toward the
trivial solution, while for {=400 a nontrivial cellular
state has developed. These findings are in qualitative
agreement with the theoretical results. For the parame-
ter values that we have considered, our theory, Fig. 1,
predicts finite amplitude solutions for £=10. However,
in our numerical simulations, we had to take { as large as
400 before nontrivial solutions were found.

We have also considered the influence of the under-
cooling effects, represented by the parameter §, on the
convective cells. Figure 3 shows the development of the
initial profile into steady states for § values ranging be-
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FIG. 2. Plot showing the time development of the initial con-
dition (— — —) for parameter values: S =0.035, 7=0.001,
A =0.10, and B=1.4 for £=0.0 (V) and £=400 ( X).

tween 0 and 400. We notice that increases in § lead to re-
gions with f =0 narrower than those with f <0, and to
an increase in the amplitude. In the narrow regions, the
cells are long, thin, and have sharp peaks, while in the
wider regions the cells have rounded tips for
100<£=<200. This is due to the fact that in regions
where f <0, both the liquid height and the temperature
difference are smaller than those required for convection
onset, while the opposite scenario holds where f>0.
Therefore, regions where f > 0 are relatively more unsta-
ble than regions where f <0. The convection currents
that initiate in the unstable regions penetrate the neigh-
boring stable regions, thus leading to a periodic array of
wider cells that are lean in solute, separated by narrow
and tall solute rich cells. Since the shape of the interface
conforms to the convection pattern in the fluid, the inter-
face will then consist of wide cells with rounded tips
separated by narrow cells with sharp tips [see Fig. 4(a)].
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FIG. 3. Plot of the steady state solutions of Eq. (1) for
§=0.035, 7=0.001, 4=0.1, B=1.4, and (=0 (— — —),

300 (X)), 400 (V), 500 (0O).

2363

0.28

(=]
-3
L4
N
? i 1 T 1 T
0.0 5.0 10.0 15.0 20.0 25.0
X
g
o

-0.24

T T T T T
0.0 5.0 10.0 15.0 20.0 25.0

FIG. 4. Steady state solutions to Eq. (1) for S§=0.035,
7=0.001, 4 =0.1, B=1.4, and £=200 (a), =400 (b).
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FIG. 5. Plots of the cell pattern for parameter values
§=0.035, 7=0.001, 4 =0.1, and B=1.4 and for £=0 (a), 300
(b), 400 (c), and 500 (d). The location of the streamline denoted
by the letter L is 4.71 in (a), 4.77 in (b), 5.026 in (c), and 5.2778
in (d). The values of ¥ of maximum absolute values in the left
and right cell, respectively, are —0.000 122 6 and 0.000 123 4 in
(a), —0.0001249 and 0.0001825 in (b), —0.0001223 and
0.0002306 in (c), and —0.000 156 1 and 0.0004310 in (d).
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When § exceeds the value of about 300, a tilting in the
cells also develops in the wider regions as shown in Fig.
4(b). The size of these cells, as predicted by the disper-
sion formula, equals 27 [1]. This trend seems to be going
toward the thin interfacial fingers, which have been ob-
served experimentally. The experimental results of Jack-
son [4] reveal an interfacial structure in which the thin
fingers of solute extend into the melt associated with a
tilting of the cells during the directional solidification of
tetrabromomethane, CBr,. These results pertain to an in-
terface that becomes morphologically unstable at some
pulling rate, with the cells’s size ~30u.

These effects are more apparent in the plot of the
steamlines, which at the leading order in € are given by

(1]
W(x,z)=30r(z*—2z3+22)f . (5)

The cell pattern that is shown in Fig. 5 corresponds to
values of { ranging from O to 400. We follow the evolu-
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tion of the cell pattern with increasing § in the box of
length 27 located between the two streamlines x =7 /2
and x =57 /2 denoted by the letters K and M, respective-
ly, in the figure. When {=0, there are two counterrotat-
ing cells symmetric about z =0.5 and the line x =37/2,
denoted by the letter L in the figure. As § is increased by
intervals of 100, the left cell (¢ <0) becomes wider and
the right cell (¢ > 0) narrower. The thin cells are regions
of higher velocity than the wider cells. In the wider cells,
the center of the cell migrates to the right with increasing
values of &, the center of the cell being a point of max-
imum velocity.
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